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Co-segmentation

Segmenting shared visual patterns in an image set draws increasing interest and
becomes more important for various applications.
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Applications

Image-Based Applications
I clustering
I indexing
I summarizing
I biomedical imaging

I categorization
I similarity measure
I content-based image retrieval
I . . .
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Cosegmentation Assumptions

Each image contains only one instance of the same object.
Supply only one additional image to achieve completely automatic
segmentation.
Experimental images are somewhat unrealistic.
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Daily Pictures

Images1 may share more than one common object.

An object may appear more than one time in an image.

1The images were collect from Flickr and Google Image.
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Common Pattern Discovery

What are the common patterns in the two images?

Goal: unsupervisedly detect visual patterns that repeatedly
appear in an image set.
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Difficulties

Do you believe that “finding common patterns is difficult even for humans”?

No prior knowledge is provided for the common patterns
I What are the common patterns?
I How many common patterns are there in a set of images?
I How many times does each common pattern appear in an image?
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Review Common Pattern Discovery

An intuitive way to find the common patterns is to exhaustively
compare all sub-images at all possible positions and scales.

I Search domain is extremely huge.
I The computational cost increases exponentially with the number of

input images.
In this work, we used the common pattern discovery algorithm
proposed by Chen et al. (2010)2, which is mainly composed of
four steps:

1 Image representation & candidate matches
2 Incompatibility matrix
3 Correspondence graph
4 Density-based clustering

2
C.-P. Chen, W.-S. Chu, C.-S. Chen, and Y.-P. Hung. Common pattern discovery with high-order constraints by

density-based cluster discovery. Submitted to IEEE Transaction on Systems, Man, and Cybernetics, Part B, 2010
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À Image Representation

Given an image In, n = 1, . . . ,N, a set of local appearance
features is extracted as Fn =

{
(pi

n, s
i
n,di

n)|i = 1, . . . , |Fn|
}

, where
pi

n and si
n are the position and the scale of In.

Here, we use the OpponentSIFT descriptor3 to extract features.

3
K. van de Sande, T. Gevers, and C. Snoek. Evaluating color descriptors for object and scene recognition. IEEE Trans. on

PAMI, (in press), 2010
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À Candidate Matches (cont.)
Then, given two sets of local features of images Im and In, we filter
out the candidate setM = {ii′| ‖di

m − di′
n‖ < λ} from all possible

correspondences across each pair of local features.

Candidate matches Correct matches
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Á Incompatibility Matrix

match

match

image Im image In

Consider those candidate matches lying within the spatial
ε-neighborhood, i.e., sdm(i1, i2) < ε and sdn(i′1, i

′
2) < ε.

An incompatibility matrix D is constructed to represent the
incoherence between a pair of candidate matches.

D(i1i′1, i2i′2) = α1 × unary(i1i′1, i2i′2) + α2 × binary(i1i′1, i2i′2),

Wen-Sheng Chu (Academia Sinica) MOMI-Cosegmentation July 15, 2010 16 / 42



Á Incompatibility Matrix (cont.)

match

match

image Im image In

unary(i1i′1, i2i′2) and binary(i1i′1, i2i′2) capture the appearance
dissimilarity and geometric inconsistency for each pair of
candidate matches i2i′2 and i1i′1:

unary(i1i′1, i2i′2) =
‖di1

m − di′1
n ‖+ ‖di2

m − di′2
n ‖

2
,

binary(i1i′1, i2i′2) =
|sdm(i1, i2)− sdn(i′1, i

′
2)|√

sdm(i1, i2)sdn(i′1, i
′
2)
.
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Â Correspondence Graph

Small values in D reflects potential correct matches of a shared
object in the image pair, because appearance difference and
geometric inconsistency between correct matches shall be small.
Incorrect matches tend to be inconsistent with each other with
large incompatibilities.
We can see the candidate matchesM as the nodes that forms
the correspondence graph with corresponding linkage weights
specified by D.
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Ã Density-Based Clustering

Given the correspondence graph, the problem of finding common
patterns in an image set is reduced to a dense cluster discovery
problem.
We do not know in advance the cluster shapes.

I Clustering methods that assume each cluster has a globular shape
is not suitable, such as K-means or affinity propagation.

The number of dense clusters in the correspondence graph is also
unknown.
We utilize the density-based algorithm4 to discover clusters with
arbitrary shapes in the presence of a large number of outlier
matches.

4
M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases

with noise. In Knowledge Discovery and Datamining, pages 226–231, 1996
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Confidence Map

We derive (N − 1) feature masks for each image in the
unannotated image set.
Each feature mask records the confidence of each local feature
and indicates that how likely a local feature is a part of a common
pattern.
A confidence map for each image can be obtained by fusing the
(N − 1) feature masks.
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Preliminary Results
Preliminary results can be obtained by performing a simple
thresholding on confidence maps.
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MOMI-Cosegmentation with Common Pattern
Discovery

Conventional cosegmentation methods are restrictive in two
assumptions

I The input is an image pair.
I Each image contains the same object in different backgrounds.

Goal: detect multiple objects that may appear multiple times in
one image.
We considering the cosegmentation problem as an individual
foreground/background segmentation by incorporating the
confidence maps and preliminary segmentation results.
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Formulation

The segmentation problem of image In is interpreted as a binary
labelling problem by minimizing the following cost function:

E(X) =λcolor

∑
p∈V

Ecolor(xp) + λsmoothness

∑
(p,q)∈E

Esmoothness(xp, xq)+

λconfidence

∑
p∈V

Econfidence(xp) + λlocality

∑
p∈V

Elocality(xp).

where E is the set of all adjacent pixels pairs in In, V is the set of
all pixels in In and X = {xp|p ∈ V} is the set of labels.
The parameters λcolor, λsmoothness, λconfidence and λlocality balance
the contribution of each cost term.
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Color Term & Smoothness Term
We explain the color and smoothness terms as the fundamental
model, which are frequently used in segmentation problems5,6,7.
Color terms use the fact that different groups of fg/bg segments
tend to follow different color distributions.

Ecolor(xp) = − log G(p|xp),

G(p|xp) =

K∑
k=1

πk
1√

det Σk
exp

(
−1

2
(p− µk)

TΣ−1
k (p− µk)

)
,

where G(p|xp) is the Gaussian mixture model indicating the
probability that pixel p belongs to the label xp.
The color term encourages the pixels to follow the labels of the
most similar color model.

5
C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction using iterated graph cuts. In ACM

SIGGRAPH, page 314. ACM, 2004
6

J. Sun, W. Zhang, X. Tang, and H.-Y. Shum. Background cut. ECCV, 3952:628–641, 2006
7

J. Y. Guillemaut, J. Kilner, and A. Hilton. Robust graphcut scene segmentation and reconstruction for free-viewpoint video of
complex dynamic scenes. In ICCV, 2009
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Color Term & Smoothness Term (cont.)

Smoothness terms preserve the coherence between two
neighboring pixels of similar pixel values and imply a tendency to
solidity of objects:

Esmoothness(xp, xq) = [xp 6= xq] exp
(
−β‖p− q‖2) ,

where [expr] denotes the indicator function taking value 0, 1 for the
predicate expr.
The minimization problem using only Ecolor and Esmoothness is
similar to the GrabCut method proposed by Rother et al. (2004).
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Segmentation using the Fundamental Model
Similar colors between the foreground and the background
models distract the labelling of foreground pixels.

The segmentation domain is expanded from the initial
user-defined rectangle trimap to the entire image.
We extend the fundamental model by the confidence term
Econfidence and the locality term Elocality to recover correct
foreground pixels as well as remove false background artifacts.

Wen-Sheng Chu (Academia Sinica) MOMI-Cosegmentation July 15, 2010 27 / 42



Confidence Term
Given c(p) as the original value of a confidence map, the
confidence term is defined as

Econfidence(xp) =

{
(2xp − 1)c̃(p), c̃(p) > 0
(1− 2xp)c̃(p), otherwise

where c̃(p) is the normalized confidence cost of pixel p in [−1, 1]
by the sigmoid function:

c̃(p) = 4
(

1
1 + exp (−c(p))

− 3
4

)
.

When c̃(p) > 0, p has high possibility of belonging to the
foreground, and thus the confidence term encourages the
foreground (xp = 1) likelihood by adding c̃(p) and penalizes the
background (xp = 0) by subtracting c̃(p).
On the other hand, when c̃(p) ≤ 0, we subtract c̃(p) from xp = 1
and add c̃(p) to xp = 0.
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Confidence Term (cont.)
Most neglected foreground pixels could be recovered by
incorporating the confidence term.
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Locality Term

Background artifacts (blue dashed circles) occur when they have
similar colors as foreground pixels.
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Locality Term (cont.)

The further a pixel p is away from a reference pixel q, the less
possible p belongs to the foreground.
To remove background clutters, we impose the distance penalty
on pixels away from those with high enough confidence values:

Elocality(xp) = log
(

max
q∈V,c(q)>δ

dist(p, q)

)
,

where dist(p, q) = ‖pp − pq‖2 is the spatial distance between pixel
pairs (p, q), δ controls the threshold for candidates of pixel q.
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Experimental Results

We used min-cut algorithm8 to minimize the cost function E(X).
ε = 2000 and d = 20 are fixed across all the experiments for the
density-based clustering algorithm.
K = 5 is set for the fg/bg color models.
λcolor = 1 and λsmoothness = 40 are set for the proposed cost
function, while λconfidence and λlocality are user-specified.
Qualitative and quantitative analysis of the proposed method are
evaluated on 12 image sets collected from Flickr with moderate
variations in illumination and scale.

8
Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal boundary and region segmentation of objects in ND images. In

ICCV, volume 1, pages 105–112, 2001
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Comparison with Cosegmentation

We compare MOMI-cosegmentation with the state-of-art
cosegmentation proposed by Hochbaum and Singh (2009)9.
Some shortcomings of the implementation of Hochbaum and
Singh (2009):

1 considers only two input images
2 takes a large memory storage of additional nodes, i.e.,

segmentation errors were reported for lower-resolution images
3 requires manually labelling of RGB intensities for foreground and

background
In contrast, the proposed method:

1 considers a small image set
2 handles full-resolution images
3 preliminary labelling is completely automatic

9
D. S. Hochbaum and V. Singh. An efficient algorithm for Co-segmentation. In ICCV, 2009
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Comparison with the Fundamental Model
We experimented MOMI-cosegmentation (MOMI− CS) on more
than two input images and compared the performance with the
fundamental model (FM) used by Rother et al. (2004)10.

The proposed approach achieved an average of 2.57%
segmentation errors across the 12 image sets.

I some objects of the same class appear in heterogeneous
circumstances

I most images contain cluttered backgrounds
I each image has mega-pixel resolution

10
C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction using iterated graph cuts. In ACM

SIGGRAPH, page 314. ACM, 2004
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Some Results on Deformable Objects
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Conclusion

We have proposed a new cosegmentation approach called
MOMI-cosegmentation, which is more general and scalable.
The proposed can deal with more than two input images, and
allow multiple objects to appear more than one time in an image.
We incorporated a common pattern discovery algorithm with color,
smoothness, confidence and locality cues to achieve satisfactory
segmentation.
Label initialization and segmentation process are completely
automatic in the proposed methods.
Experiments have demonstrated that the performance of the
proposed method outperforms the state-of-art cosegmentation
method.
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Thank you for your attendance!

Questions?
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