MOMI-Cosegmentation: Simultaneous Segmentation of Multiple Objects among Multiple Images

 $\label{eq:wschu} \begin{array}{l} \mbox{Wen-Sheng Chu}^1, \mbox{Chia-Ping Chen}^{1,2} \mbox{ and Chu-Song Chen}^{1,3} \\ {\tt wschu, cpchen, song} \mbox{@iis.sinica.edu.tw} \end{array}$

¹Institute of Information Science, Academia Sinica
²Dept. of Computer Science and Information Engineering, National Taiwan University
³Graduate Institute of Networking and Multimedia, National Taiwan University
Taipei, Taiwan

Wen-Sheng Chu (Academia Sinica)

July 15, 2010 MOMI-Cosegmentation

Co-segmentation

Segmenting **shared visual patterns** in an image set draws increasing interest and becomes more important for various applications.

Applications

- Image-Based Applications
 - clustering
 - indexing
 - summarizing
 - biomedical imaging

- categorization
- similarity measure
- content-based image retrieval

▶ ...

Outline

Related Works

MOMI-Cosegmentation

- Review Common Pattern Discovery
- MOMI-Cosegmentation with Common Pattern Discovery

3 Experimental Results

Conclusion

Outline

Related Works

MOMI-Cosegmentation

- Review Common Pattern Discovery
- MOMI-Cosegmentation with Common Pattern Discovery

3 Experimental Results

4 Conclusion

Related Works

Cosegmentation

- Simultaneously segment the same object from two (or more) images
- Make segmentation of an object easier without user interaction
- Rother et al. (2006)

C. Rother, T. Minka, A. Blaké, and V. Kolmogorov. Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs. In *CVPR*, 2006

Cao and Fei-Fei (2007)

L. Cao and L. Fei-Fei. Spatially coherent latent topic model for concurrent object segmentation and classification. In *ICCV*, 2007

 Cheng and Figueiredo (2007)
 D. S. Cheng and M. Figueiredo. Cosegmentation for image sequences. In International Conference on Image Analysis and Processing, pages 635–640, 2007

Gallagher and Chen (2008) A. C. Gallagher and T.-H. Chen. Clothing cosegmentation for recognizing people. In CVPR, pages 1–8, 2008

Mukherjee et al. (2009)

L. Mukherjee, V. Singh, and C. R. Dyer. Half-integrality based algorithms for cosegmentation of images. In *CVPR*, 2009

 Hochbaum and Singh (2009)
 D. S. Hochbaum and V. Singh. An efficient algorithm for Co-segmentation. In *ICCV*, 2009

Batra et al. (2010)

D. Batra, A. Kowdle, D. Parikh, J. Luo, and T.-H. Chen. icoseg: Interactive co-segmentation with intelligent scribble guidance. In *CVPR*, 2010

Joulin et al. (2010)

A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for image co-segmentation. In *Proceedings* of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010

Cosegmentation Assumptions

- Each image contains only one instance of the same object.
- Supply only one additional image to achieve completely automatic segmentation.
- Experimental images are somewhat unrealistic.

Daily Pictures

Images¹ may share more than one common object.

An object may appear more than one time in an image.

Wen-Sheng Chu (Academia Sinica)

MOMI-Cosegmentation

¹The images were collect from Flickr and Google Image.

Outline

Related Works

MOMI-Cosegmentation

- Review Common Pattern Discovery
- MOMI-Cosegmentation with Common Pattern Discovery

3 Experimental Results

4 Conclusion

Outline

Related Works

MOMI-Cosegmentation

• Review Common Pattern Discovery

MOMI-Cosegmentation with Common Pattern Discovery

3 Experimental Results

4 Conclusion

Common Pattern Discovery

What are the common patterns in the two images?

 Goal: unsupervisedly detect visual patterns that repeatedly appear in an image set.

Difficulties

Do you believe that "finding common patterns is difficult even for humans"?

- No prior knowledge is provided for the common patterns
 - What are the common patterns?
 - How many common patterns are there in a set of images?
 - How many times does each common pattern appear in an image?

Review Common Pattern Discovery

- An intuitive way to find the common patterns is to exhaustively compare all sub-images at all possible positions and scales.
 - Search domain is extremely huge.
 - The computational cost increases exponentially with the number of input images.
- In this work, we used the common pattern discovery algorithm proposed by Chen et al. (2010)², which is mainly composed of four steps:
 - Image representation & candidate matches
 - Incompatibility matrix
 - Correspondence graph
 - Density-based clustering

²C.-P. Chen, W.-S. Chu, C.-S. Chen, and Y.-P. Hung. Common pattern discovery with high-order constraints by density-based cluster discovery. *Submitted to IEEE Transaction on Systems, Man, and Cybernetics, Part B*, 2010

① Image Representation

- Given an image I_n , n = 1, ..., N, a set of local appearance features is extracted as $\mathcal{F}_n = \{(\mathbf{p}_n^i, s_n^i, \mathbf{d}_n^i) | i = 1, ..., |\mathcal{F}_n|\}$, where \mathbf{p}_n^i and s_n^i are the position and the scale of I_n .
- Here, we use the OpponentSIFT descriptor³ to extract features.

Wen-Sheng Chu (Academia Sinica)

³K. van de Sande, T. Gevers, and C. Snoek. Evaluating color descriptors for object and scene recognition. *IEEE Trans. on PAMI*, (in press), 2010

① Candidate Matches (cont.)

• Then, given two sets of local features of images I_m and I_n , we filter out the candidate set $\mathcal{M} = \{ii' | \|\mathbf{d}_m^i - \mathbf{d}_n^{i'}\| < \lambda\}$ from all possible correspondences across each pair of local features.

Candidate matches

Correct matches

② Incompatibility Matrix

- Consider those candidate matches lying within the spatial ε -neighborhood, i.e., $sd^m(i_1, i_2) < \varepsilon$ and $sd^n(i'_1, i'_2) < \varepsilon$.
- An incompatibility matrix **D** is constructed to represent the incoherence between a pair of candidate matches.

$$\mathbf{D}(i_1i'_1, i_2i'_2) = \alpha_1 \times unary(i_1i'_1, i_2i'_2) + \alpha_2 \times binary(i_1i'_1, i_2i'_2),$$

② Incompatibility Matrix (cont.)

unary(i₁i'₁, i₂i'₂) and binary(i₁i'₁, i₂i'₂) capture the appearance dissimilarity and geometric inconsistency for each pair of candidate matches i₂i'₂ and i₁i'₁:

$$unary(i_1i'_1, i_2i'_2) = \frac{\|\mathbf{d}_m^{i_1} - \mathbf{d}_n^{i'_1}\| + \|\mathbf{d}_m^{i_2} - \mathbf{d}_n^{i'_2}\|}{2},$$

binary(i_1i'_1, i_2i'_2) = $\frac{|sd^m(i_1, i_2) - sd^m(i'_1, i'_2)|}{\sqrt{sd^m(i_1, i_2)sd^n(i'_1, i'_2)}}.$

③ Correspondence Graph

- Small values in **D** reflects potential correct matches of a shared object in the image pair, because appearance difference and geometric inconsistency between correct matches shall be small.
- Incorrect matches tend to be inconsistent with each other with large incompatibilities.
- We can see the candidate matches *M* as the nodes that forms the correspondence graph with corresponding linkage weights specified by **D**.

④ Density-Based Clustering

- Given the correspondence graph, the problem of finding common patterns in an image set is reduced to a dense cluster discovery problem.
- We do not know in advance the cluster shapes.
 - Clustering methods that assume each cluster has a globular shape is not suitable, such as K-means or affinity propagation.
- The number of dense clusters in the correspondence graph is also unknown.
- We utilize the density-based algorithm⁴ to discover clusters with arbitrary shapes in the presence of a large number of outlier matches.

⁴M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In *Knowledge Discovery and Datamining*, pages 226–231, 1996

Confidence Map

- We derive (*N* − 1) feature masks for each image in the unannotated image set.
- Each feature mask records the confidence of each local feature and indicates that how likely a local feature is a part of a common pattern.
- A confidence map for each image can be obtained by fusing the (*N*−1) feature masks.

Preliminary Results

• Preliminary results can be obtained by performing a simple thresholding on confidence maps.

Outline

Related Works

- MOMI-Cosegmentation
 - Review Common Pattern Discovery
 - MOMI-Cosegmentation with Common Pattern Discovery

3 Experimental Results

4 Conclusion

MOMI-Cosegmentation with Common Pattern Discovery

- Conventional cosegmentation methods are restrictive in two assumptions
 - The input is an image pair.
 - Each image contains the same object in different backgrounds.
- Goal: detect *multiple objects* that may appear *multiple times* in one image.
- We considering the cosegmentation problem as an individual foreground/background segmentation by incorporating the confidence maps and preliminary segmentation results.

Formulation

1

 The segmentation problem of image *I_n* is interpreted as a binary labelling problem by minimizing the following cost function:

$$\begin{split} E(X) = &\lambda_{\text{color}} \sum_{p \in \mathcal{V}} E_{\text{color}}(x_p) + \lambda_{\text{smoothness}} \sum_{(p,q) \in \mathcal{E}} E_{\text{smoothness}}(x_p, x_q) + \\ &\lambda_{\text{confidence}} \sum_{p \in \mathcal{V}} E_{\text{confidence}}(x_p) + \lambda_{\text{locality}} \sum_{p \in \mathcal{V}} E_{\text{locality}}(x_p). \end{split}$$

where \mathcal{E} is the set of all adjacent pixels pairs in I_n , \mathcal{V} is the set of all pixels in I_n and $X = \{x_p | p \in \mathcal{V}\}$ is the set of labels.

• The parameters λ_{color} , $\lambda_{smoothness}$, $\lambda_{confidence}$ and $\lambda_{locality}$ balance the contribution of each cost term.

Color Term & Smoothness Term

- We explain the color and smoothness terms as the fundamental model, which are frequently used in segmentation problems^{5,6,7}.
- **Color terms** use the fact that different groups of fg/bg segments tend to follow different color distributions.

$$E_{\mathsf{color}}(x_p) = -\log G(p|x_p),$$

$$G(p|x_p) = \sum_{k=1}^{K} \pi_k \frac{1}{\sqrt{\det \Sigma_k}} \exp\left(-\frac{1}{2}(p-\mu_k)^T \Sigma_k^{-1}(p-\mu_k)\right),$$

where $G(p|x_p)$ is the Gaussian mixture model indicating the probability that pixel *p* belongs to the label x_p .

• The color term encourages the pixels to follow the labels of the most similar color model.

⁵C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction using iterated graph cuts. In ACM SIGGRAPH, page 314. ACM, 2004

⁶J. Sun, W. Zhang, X. Tang, and H.-Y. Shum. Background cut. *ECCV*, 3952:628–641, 2006

⁷ J. Y. Guillemaut, J. Kilner, and A. Hilton. Robust graphcut scene segmentation and reconstruction for free-viewpoint video of complex dynamic scenes. In *ICCV*, 2009

Wen-Sheng Chu (Academia Sinica)

Color Term & Smoothness Term (cont.)

 Smoothness terms preserve the coherence between two neighboring pixels of similar pixel values and imply a tendency to solidity of objects:

$$E_{\text{smoothness}}(x_p, x_q) = [x_p \neq x_q] \exp\left(-\beta \|p - q\|^2\right),$$

where [expr] denotes the indicator function taking value 0, 1 for the predicate *expr*.

• The minimization problem using only *E*_{color} and *E*_{smoothness} is similar to the GrabCut method proposed by Rother et al. (2004).

Segmentation using the Fundamental Model

• Similar colors between the foreground and the background models distract the labelling of foreground pixels.

- The segmentation domain is expanded from the initial user-defined rectangle trimap to the entire image.
- We extend the fundamental model by the confidence term $E_{\text{confidence}}$ and the locality term E_{locality} to recover correct foreground pixels as well as remove false background artifacts.

Wen-Sheng Chu (Academia Sinica)

MOMI-Cosegmentation

Confidence Term

• Given *c*(*p*) as the original value of a confidence map, the confidence term is defined as

$$E_{\text{confidence}}(x_p) = \begin{cases} (2x_p - 1)\tilde{c}(p), & \tilde{c}(p) > 0\\ (1 - 2x_p)\tilde{c}(p), & otherwise \end{cases}$$

where $\tilde{c}(p)$ is the normalized confidence cost of pixel *p* in [-1, 1] by the sigmoid function:

$$\tilde{c}(p) = 4\left(\frac{1}{1 + \exp\left(-c(p)\right)} - \frac{3}{4}\right).$$

- When *c̃*(*p*) > 0, *p* has high possibility of belonging to the foreground, and thus the confidence term encourages the foreground (*x_p* = 1) likelihood by adding *c̃*(*p*) and penalizes the background (*x_p* = 0) by subtracting *c̃*(*p*).
- On the other hand, when č(p) ≤ 0, we subtract č(p) from x_p = 1 and add č(p) to x_p = 0.

Confidence Term (cont.)

 Most neglected foreground pixels could be recovered by incorporating the confidence term.

Locality Term

 Background artifacts (blue dashed circles) occur when they have similar colors as foreground pixels.

Locality Term (cont.)

- The further a pixel *p* is away from a reference pixel *q*, the less possible *p* belongs to the foreground.
- To remove background clutters, we impose the distance penalty on pixels away from those with high enough confidence values:

$$E_{\mathsf{locality}}(x_p) = \log \left(\max_{q \in \mathcal{V}, c(q) > \delta} dist(p,q) \right),$$

where $dist(p,q) = ||\mathbf{p}_p - \mathbf{p}_q||^2$ is the spatial distance between pixel pairs (p,q), δ controls the threshold for candidates of pixel q.

Outline

Related Works

MOMI-Cosegmentation

- Review Common Pattern Discovery
- MOMI-Cosegmentation with Common Pattern Discovery

3 Experimental Results

4 Conclusion

Experimental Results

- We used min-cut algorithm⁸ to minimize the cost function E(X).
- $\epsilon = 2000$ and d = 20 are fixed across all the experiments for the density-based clustering algorithm.
- K = 5 is set for the fg/bg color models.
- $\lambda_{\text{color}} = 1$ and $\lambda_{\text{smoothness}} = 40$ are set for the proposed cost function, while $\lambda_{\text{confidence}}$ and $\lambda_{\text{locality}}$ are user-specified.
- Qualitative and quantitative analysis of the proposed method are evaluated on 12 image sets collected from Flickr with moderate variations in illumination and scale.

Wen-Sheng Chu (Academia Sinica)

⁸Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal boundary and region segmentation of objects in ND images. In *ICCV*, volume 1, pages 105–112, 2001

Comparison with Cosegmentation

- We compare MOMI-cosegmentation with the state-of-art cosegmentation proposed by Hochbaum and Singh (2009)⁹.
- Some shortcomings of the implementation of Hochbaum and Singh (2009):
 - considers only two input images
 - takes a large memory storage of additional nodes, i.e., segmentation errors were reported for lower-resolution images
 - requires manually labelling of RGB intensities for foreground and background
- In contrast, the proposed method:
 - considers a small image set
 - andles full-resolution images
 - preliminary labelling is completely automatic

⁹D. S. Hochbaum and V. Singh. An efficient algorithm for Co-segmentation. In *ICCV*, 2009

Wen-Sheng Chu (Academia Sinica)

Comparison with the Fundamental Model

 We experimented MOMI-cosegmentation (MOMI - CS) on more than two input images and compared the performance with the fundamental model (FM) used by Rother et al. (2004)¹⁰.

set(#img)	sulley(3)	starbucks(3)	magnet(4)	flag(6)	pisa(6)	superman(7)
FM	20.50	2.68	22.56	7.71	17.88	18.62
MOMI-CS	5.71	0.41	1.20	0.79	3.01	1.38
set(#img)	domino(6)	heineken(8)	warcraft(6)	kfc(6)	lego(4)	pringles(8)
FM	26.65	18.47	26.65	35.21	43.52	15.24
MOMI-CS	2.46	1.25	2.63	6.78	1.08	4.17

- The proposed approach achieved an average of 2.57% segmentation errors across the 12 image sets.
 - some objects of the same class appear in heterogeneous circumstances
 - most images contain cluttered backgrounds
 - each image has mega-pixel resolution

Wen-Sheng Chu (Academia Sinica)

¹⁰ C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction using iterated graph cuts. In ACM SIGGRAPH, page 314. ACM, 2004

Some Results on Deformable Objects

Outline

Related Works

MOMI-Cosegmentation

- Review Common Pattern Discovery
- MOMI-Cosegmentation with Common Pattern Discovery

3 Experimental Results

4 Conclusion

Conclusion

- We have proposed a new cosegmentation approach called MOMI-cosegmentation, which is more general and scalable.
- The proposed can deal with more than two input images, and allow multiple objects to appear more than one time in an image.
- We incorporated a common pattern discovery algorithm with color, smoothness, confidence and locality cues to achieve satisfactory segmentation.
- Label initialization and segmentation process are completely automatic in the proposed methods.
- Experiments have demonstrated that the performance of the proposed method outperforms the state-of-art cosegmentation method.

References

- D. Batra, A. Kowdle, D. Parikh, J. Luo, and T.-H. Chen. icoseg: Interactive co-segmentation with intelligent scribble guidance. In CVPR, 2010.
- Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal boundary and region segmentation of objects in ND images. In ICCV, volume 1, pages 105–112, 2001.
- L. Cao and L. Fei-Fei. Spatially coherent latent topic model for concurrent object segmentation and classification. In ICCV, 2007.
- C.-P. Chen, W.-S. Chu, C.-S. Chen, and Y.-P. Hung. Common pattern discovery with high-order constraints by density-based cluster discovery. Submitted to IEEE Transaction on Systems, Man, and Cybernetics, Part B, 2010.
- D. S. Cheng and M. Figueiredo. Cosegmentation for image sequences. In International Conference on Image Analysis and Processing, pages 635–640, 2007.
- M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In *Knowledge Discovery and Datamining*, pages 226–231, 1996.
- A. C. Gallagher and T.-H. Chen. Clothing cosegmentation for recognizing people. In CVPR, pages 1–8, 2008.
- J. Y. Guillemaut, J. Kilner, and A. Hilton. Robust graphcut scene segmentation and reconstruction for free-viewpoint video of complex dynamic scenes. In ICCV, 2009.
- D. S. Hochbaum and V. Singh. An efficient algorithm for Co-segmentation. In ICCV, 2009.
- A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for image co-segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010.
- L. Mukherjee, V. Singh, and C. R. Dyer. Half-integrality based algorithms for cosegmentation of images. In CVPR, 2009.
- C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction using iterated graph cuts. In ACM SIGGRAPH, page 314. ACM, 2004.
- C. Rother, T. Minka, A. Blake, and V. Kolmogorov. Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs. In CVPR, 2006.
- J. Sun, W. Zhang, X. Tang, and H.-Y. Shum. Background cut. ECCV, 3952:628-641, 2006.
- K. van de Sande, T. Gevers, and C. Snoek. Evaluating color descriptors for object and scene recognition. *IEEE Trans. on PAMI*, (in press), 2010.

Thank you for your attendance!

Questions?

Wen-Sheng Chu (Academia Sinica)

MOMI-Cosegmentation