Video Co-summarization: Summarizing Videos Using Visual Co-occurrence

Wen-Sheng Chu, Yale Song and Alejandro Jaimes

Video summarization

surfing

Q

Travel Nicaragua: Surfing

Summaries attractive to users?

Summaries attractive to users?

Summaries attractive to users?

A desired method

Generates adaptive summaries that fits user's interests

Statistics about videos

- On December 2012
 - 100 hours: # of hours of videos uploaded / minute
 - 82.5%: % of US audience that viewed videos online
 - 200B: # of videos viewed online / month
 - 4B: # of hours of video viewed / month

A desired method

Generates adaptive summaries that fits user's interests

□ Scales to large datasets

- Sports videos
 - Canonical views

E.g., Fleischman et al. [ACMMM'07]

E.g., Chen & Vleechouwer [TCSVT'11]

- Sports videos
 - Canonical views

E.g., Fleischman et al. [ACMMM'07]

E.g., Chen & Vleechouwer [TCSVT'11]

E.g., Zhu et al. [ACMMM'07]

- News videos
 - Topic themes
 - Rich texts/transcripts

E.g. Wu et al. [SPM'06], Liu et al. [ACMMM'12]

Surveillance videos
Stationary background

Synopsis: Pritch et al. [TPAMI'08]

Online video condensation: Feng et al. [CVPR'12]

- Learn to summarize videos
 - Egocentric videos: use clues from faces, hands, interesting objects

- Learn to summarize videos
 - Consumer videos: learn to estimate per-frame interestingness from annotated data

A desired method

Generates adaptive summaries that fits user's interests

□ Scales to large datasets

□ Requires limited/no human supervision

A desired method

□ Generates adaptive summaries that fits user's interests

□ Scales to large datasets

□ Requires limited/no human supervision

- No prior knowledge and annotated data
 - Sparse dictionary learning: Cong et al. [TMM'12], Zhao and Xing [CVPR'14]
 - Hierarchical clustering: Mahmoud et al. [ICMLA'13]
- Additional resources
 - Human attention during video watching: Ngo et al. [TCSVT'05]
 - Web image priors: Khosla et al. [CVPR'13], Kim et al. [CVPR'14]

Important concepts repeat visually

Surfing

Wallpaper

Sunset

Waves

Clipart

Important concepts repeat visually

• Statue of Liberty

Night

Close Up

Clipart

Important concepts repeat visually

• Bike polo

Logo

Video Co-Summarization

Video segmentation

Formulation

Discovering visual co-occurrence as "maximal bi-cliques"

$$\max_{\mathbf{u},\mathbf{v}} \quad \sum_{ij} C_{ij} u_i v_j - \lambda_u \|\mathbf{u}\|_1 - \lambda_v \|\mathbf{v}\|_1$$

subject to $u_i + v_j \le 1 + I(C_{ij} \ge \epsilon), \forall i, j$ $\mathbf{u} \in [0, 1]^m, \mathbf{v} \in [0, 1]^n,$

Algorithm

Input: Bipartite graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{W})$, where \mathbf{W} is
described by the co-occurrence matrix \mathbf{C} ;
parameters $\lambda_u \ge 0$, $\lambda_v \ge 0$, and ϵ .Output: Maximal biclique indicated by \mathbf{u} and \mathbf{v} 1 Initialize $\mathbf{v} \leftarrow \operatorname{rand}(n) \in [0, 1]^n$;2 while not converged do3Compute $\widehat{u}_i = \min\{I(\mathbf{C}_{ij} \ge \epsilon) - v_j\}_{j=1}^n$;4Update $u_i = \min(I(\mathbf{C}_i: \mathbf{v} \ge \lambda_u), 1 + (\widehat{u}_i)_-)$;

5 Compute
$$\hat{v}_j = \min\{I(\mathbf{C}_{ij} \ge \epsilon) - u_i\}_{i=1}^m;$$

6 Update $v_j = \min(I(\mathbf{u}^\top \mathbf{C}_{:j} \ge \lambda_v), 1 + (\widehat{v}_j)_-);$

Exp (1/3): Sanity check

- CMU-Mocap dataset
 - We used the Subject 86 that contains 14 long sequences labeled with segment boundaries [3]
 - Thousands of frames / sequence
 - Up to 10 human actions / sequence (out of a total of 48 pre-defined actions)
- Representation
 - Each frame is represented a 30-D feature vector from 10 joints

Competitive methods

- 1. Baseline k-means
 - k=#groundtruth actions
- 2. Co-clustering (Dhillon [SIGKDD'01])
- 3. ACA (Zhou et al. [TPAMI'13])
- 4. MBF (our method)

On a sequence pair

• Sequences 86_03 and 86_05

On a sequence pair

(b) K-means (AP=0.54, R=0.81, F1=0.65)

On a sequence pair

(d) Co-clustering [11] (AP=0.50, R=1.00, F1=0.67)

On all sequence pairs

Exp (2/3): Query-specific video summarization

- We compiled a dataset using 10 queries following SumMe [ECCV'14]
- 10 categories, 51 videos, 150 minutes.
- 246k frames, 2.8k segments.

Features

- CENTRIST (Wu and Rehg [TPAMI'11])
 254-D
- Dense-SIFT
 - Resize each frame to 620x420
 - 3840-D
- HSV color moments (Cong et al. [TMM'12])
 108-D
- Concatenated features and reduced to 400-D using PCA
- Use 200-entry BoTW to represent each segment

Competitive methods

- ACA [TPAMI'13] is not directly comparable
 - The assumption of repetitive temporal patterns barely occur in real-world videos
 - Building a kernel matrix for >15k frames is computationally prohibitive.
- 1. Baseline k-means (different values of k)
- 2. Co-clustering (Dhillon [SIGKDD'01])
- 3. LiveLight (Zhao and Xing [CVPR'14])
- 4. MBF (our method)

User study

- 3 judges label relevant segments in each video (#segments is >10% and <50%)
- Groundtruth is compiled by pooling those segments selected by >1 judges.
- Mean average precision (mAP) is computed for evaluation.

	Methods	Base*	Bike*	Eiffel*	Excavators*	Kids*	MLB	NFL	Notre Dame*	Statue*	Surfing	Avg.
k = 5	k-means	0.432	0.427	0.422	0.289	0.791	0.556	0.663	0.392	0.543	0.550	0.507
	LL	0.226	0.305	0.413	0.667	0.744	0.508	0.710	0.568	0.763	0.334	0.524
	COC	0.495	0.802	0.580	0.713	0.859	0.561	0.762	0.803	0.378	0.668	0.662
	MBF	0.680	0.788	0.596	0.690	0.798	0.638	0.680	0.715	0.810	0.684	0.707
k = 15	k-means	0.397	0.369	0.422	0.338	0.772	0.485	0.562	0.442	0.597	0.481	0.487
	LL	0.318	0.459	0.468	0.671	0.710	0.499	0.737	0.592	0.653	0.337	0.545
	COC	0.496	0.795	0.561	0.656	0.852	0.503	0.823	0.676	0.458	0.586	0.641
	MBF	0.747	0.663	0.562	0.674	0.859	0.755	0.760	0.680	0.661	0.652	0.701

Exp (3/3): Concept visualization

• Can a robot watch Youtube to learn about human's concepts?

 A natural extension of co-sum: visualize a concept as the most frequently cooccurring video clips

Surfing example

AMT-like user study

▼ Continue to Set 2. CLICK HERE to watch the following 4 shots selected from the above video.

Subject ratings

- 20 subjects, ages ranging from 23-33
- 15 males, 5 females

Most winning case

(a) Surfing: k-means (-0.74), LL (-0.57), Co-clustering (0.38), MBF (0.87)

Most losing case

(b) Eiffel Tower: k-means (0.47), LL (-0.50), Co-clustering (-0.13), MBF (0.34)

Summary

- We propose video co-summarization that assumes important concepts are likely to visually repeat.
- We propose a maximal biclique finding algorithm that can be parallelized with closed-form updates
- Experiments suggest visually co-occurring clips are close to human summaries.

A desired method

☑ Generates adaptive summaries that fits user's interests

☑ Scales to large datasets

☑ Requires limited/no human supervision

Thank you!

Base jumping

Bike polo

Excavator river crossing

Kids playing in leaves

Statue of Liberty

