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Video summarization



Summaries attractive to users?
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A desired method

  Generates adaptive summaries that fits 

user’s interests



Statistics about videos

•  On December 2012

–   100 hours: # of hours of videos uploaded / 

minute

–   82.5%: % of US audience that viewed videos 

online 

–   200B: # of videos viewed online / month

–   4B: # of hours of video viewed / month

http://royal.pingdom.com/2013/01/16/internet-2012-in-numbers/ 



A desired method

  Generates adaptive summaries that fits 

user’s interests

  Scales to large datasets
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– Canonical views 

E.g., Fleischman et al. [ACMMM’07] E.g., Chen & Vleechouwer [TCSVT’11] 
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Supervised video summarization

•   News videos

– Topic themes

– Rich texts/transcripts

E.g. Wu et al. [SPM’06], Liu et al. [ACMMM’12] 



Supervised video summarization

•   Surveillance videos

– Stationary background

Synopsis: Pritch et al. [TPAMI’08] Online video condensation: Feng et al. [CVPR’12] 



Supervised video summarization

•   Learn to summarize videos

– Egocentric videos: use clues from faces, hands, 

interesting objects 

E.g., Lee et al. [CVPR’12], Lu and Grauman [CVPR’13] 



Supervised video summarization

•   Learn to summarize videos

– Consumer videos: learn to estimate per-frame 

interestingness from annotated data

Potapov et al. [ECCV’14] Sun et al. [ECCV’14] 
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  Scales to large datasets

  Requires limited/no human supervision
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Unsupervised video summarization

•  No prior knowledge and annotated data

– Sparse dictionary learning: Cong et al. [TMM’12], Zhao 

and Xing [CVPR’14]

– Hierarchical clustering: Mahmoud et al. [ICMLA’13]

•  Additional resources

– Human attention during video watching: Ngo et al. 

[TCSVT’05]

– Web image priors: Khosla et al. [CVPR’13], Kim et al. 

[CVPR’14]



Important concepts repeat visually

•  Surfing



Important concepts repeat visually

•  Statue of Liberty



Important concepts repeat visually

•  Bike polo



Video Co-Summarization



Video segmentation



Formulation

Discovering visual "

co-occurrence as "

“maximal bi-cliques”



Algorithm



Exp (1/3): Sanity check

•  CMU-Mocap dataset

– We used the Subject 86 that contains 14 long 

sequences labeled with segment boundaries [3]

– Thousands of frames / sequence

– Up to 10 human actions / sequence (out of a 

total of 48 pre-defined actions)

•  Representation

– Each frame is represented a 30-D feature 

vector from 10 joints



Competitive methods

1.  Baseline k-means 

–  k=#groundtruth actions

2.  Co-clustering (Dhillon [SIGKDD’01])

3.  ACA (Zhou et al. [TPAMI’13])

4.  MBF (our method)



On a sequence pair

•  Sequences 86_03 and 86_05
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On all sequence pairs



Exp (2/3): Query-specific video 

summarization
•  We compiled a dataset using 10 queries 

following SumMe [ECCV’14]

•  10 categories, 51 videos, 150 minutes.

•  246k frames, 2.8k segments.



Features

•  CENTRIST (Wu and Rehg [TPAMI’11])
–  254-D

•  Dense-SIFT
– Resize each frame to 620x420

–  3840-D

•  HSV color moments (Cong et al. [TMM’12])
–  108-D

•  Concatenated features and reduced to 400-D 
using PCA

•  Use 200-entry BoTW to represent each 
segment



Competitive methods

•  ACA [TPAMI’13] is not directly comparable
–  The assumption of repetitive temporal patterns 

barely occur in real-world videos

– Building a kernel matrix for >15k frames is 
computationally prohibitive.

1.  Baseline k-means (different values of k)

2.  Co-clustering (Dhillon [SIGKDD’01])

3.  LiveLight (Zhao and Xing [CVPR’14])

4.  MBF (our method)



User study

•  3 judges label relevant segments in each 

video (#segments is >10% and <50%)

•  Groundtruth is compiled by pooling those 

segments selected by >1 judges.

•  Mean average precision (mAP) is computed 

for evaluation.



Exp (3/3): Concept visualization

•  Can a robot watch Youtube to learn about 

human’s concepts?

•  A natural extension of co-sum: visualize a 

concept as the most frequently co-

occurring video clips



Surfing example



AMT-like user study



Subject ratings

•  20 subjects, ages ranging from 23-33

•  15 males, 5 females



Most winning case



Most losing case



Summary

•  We propose video co-summarization that 

assumes important concepts are likely to 

visually repeat.

•  We propose a maximal biclique finding 

algorithm that can be parallelized with 

closed-form updates

•  Experiments suggest visually co-occurring 

clips are close to human summaries.



A desired method

  Generates adaptive summaries that fits 

user’s interests

  Scales to large datasets

  Requires limited/no human supervision



Thank you!


