Selective Transfer Machine for Personalized Facial Expression Analysis

Abstract

Automatic facial AU and expression detection from videos is a long-standing problem. The problem is challenging in part because classifiers must generalize to previously unknown subjects that differ markedly in behavior and facial morphology (e.g., heavy versus delicate brows, smooth versus deeply etched wrinkles) from those on which the classifiers are trained. This paper addresses the problem of how to personalize a generic classifier without additional labels from the test subject. We propose a transductive learning method, which we refer to as a Selective Transfer Machine (STM), to personalize a generic classifier by attenuating person-specific mismatches. STM achieves this effect by simultaneously learning a classifier and re-weighting the training samples that are most relevant to the test subject. We compared STM to both generic classifiers and cross-domain learning methods on four benchmarks: CK+, GEMEP-FERA, RUFACS and GFT. STM outperformed generic classifiers in all.

Publication
IEEE Transactions on Pattern Analysis and Machine Intelligence
Date
Links
Paper